Neural Learning of Chaotic Dynamics: The Error Propagation Algorithm

نویسندگان

  • Rembrandt Bakker
  • Jaap C. Schouten
  • Cor M. van den Bleek
  • C. Lee Giles
چکیده

An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured timeseries. The algorithm has four special features: 1. The state of the system is extracted from the time-series using delays, followed by weighted Principal Component Analysis (PCA) data reduction. 2. The prediction model consists of both a linear model and a Multi-Layer-Perceptron (MLP). 3. The effective prediction horizon during training is user-adjustable, due to ‘error propagation’: prediction errors are partially propagated to the next time step. 4. A criterion is monitored during training to select the model that has a chaotic attractor most similar to the real system’s attractor. The algorithm is applied to laser data from the Santa Fe time-series competition (set A). The resulting model is not only useful for short-term predictions but it also generates time-series with similar chaotic characteristics as the measured data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm

Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...

متن کامل

Adaptive Chaotic Prediction Algorithm of RBF Neural Network Filtering Model Based on Phase Space Reconstruction

With the analysis of the technology of phase space reconstruction, a modeling and forecasting technique based on the Radial Basis Function (RBF) neural network for chaotic time series is presented in this paper. The predictive model of chaotic time series is established with the adaptive RBF neural networks and the steps of the chaotic learning algorithm with adaptive RBF neural networks are ex...

متن کامل

Learning Chaotic Attractors by Neural Networks

An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored that tests the hypothesis that the reconstructed attractors of model-generated and measured data ar...

متن کامل

Geoid Determination Based on Log Sigmoid Function of Artificial Neural Networks: (A case Study: Iran)

A Back Propagation Artificial Neural Network (BPANN) is a well-known learning algorithmpredicated on a gradient descent method that minimizes the square error involving the networkoutput and the goal of output values. In this study, 261 GPS/Leveling and 8869 gravity intensityvalues of Iran were selected, then the geoid with three methods “ellipsoidal stokes integral”,“BPANN”, and “collocation” ...

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997